Assessing canopy PRI for water stress detection with diurnal airborne imagery

نویسندگان

  • L. Suárez
  • P. J. Zarco-Tejada
  • G. Sepulcre-Cantó
  • O. Pérez-Priego
  • J. R. Miller
  • J. C. Jiménez-Muñoz
  • J. Sobrino
چکیده

A series of diurnal airborne campaigns were conducted over an orchard field to assess the canopy Photochemical Reflectance Index (PRI) as an indicator of water stress. Airborne campaigns over two years were conducted with the Airborne Hyperspectral Scanner (AHS) over an orchard field to investigate changes in PRI, in the Transformed Chlorophyll Absorption in Reflectance Index (TCARI) normalized by the Optimized SoilAdjusted Vegetation Index (OSAVI) (TCARI/OSAVI), and in the Normalized Difference Vegetation Index (NDVI) as function of field-measured physiological indicators of water stress, such as stomatal conductance, stem water potential, steady-state fluorescence, and crown temperature. The AHS sensor was flown at three times on each 2004 and 2005 years, collecting 2 m spatial resolution imagery in 80 spectral bands in the 0.43– 12.5 μm spectral range. Indices PRI, TCARI/OSAVI, and NDVI were calculated from reflectance bands, and thermal bands were assessed for the retrieval of land surface temperature, separating pure crowns from shadows and sunlit soil pixels. The Photochemical Reflectance Index, originally developed for xanthophyll cycle pigment change detection was calculated to assess its relationship with water stress at a canopy level, and more important, to assess canopy structural and viewing geometry effects for water stress detection in diurnal airborne experiments. The FLIGHT 3D canopy reflectance model was used to simulate the bi-directional reflectance changes as function of the viewing geometry, background and canopy structure. This manuscript demonstrates that the airborne-level PRI index is sensitive to the de-epoxidation of the xanthophyll pigment cycle caused by water stress levels, but affected diurnally by the confounding effects of BRDF. Among the three vegetation indices calculated, only airborne PRI demonstrated sensitivity to diurnal changes in physiological indicators of water stress, such as canopy temperature minus air temperature (Tc–Ta), stomatal conductance (G), and stem water potential (ψ) measured in the field at the time of each image acquisition. No relationships were found from the diurnal experiments between NDVI and TCARI/OSAVI with the tree-measured physiological measures. FLIGHT model simulations of PRI demonstrated that PRI is highly affected by the canopy structure and background. © 2007 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminating Irrigated and Rainfed Maize with Diurnal Fluorescence and Canopy Temperature Airborne Maps

This study evaluates the potential of airborne remote sensing images to detect water stress in maize. Visible and near infrared CASI (Itres Research Ltd., Calgary, AL, Canada) and thermal AHS-160 (Sensytech Inc., Beverly, MA, USA) data were acquired at three different times during the day on a maize field (Zea mays L.) grown with three different irrigation treatments. An intensive field campaig...

متن کامل

Spectral Similarity and PRI Variations for a Boreal Forest Stand Using Multi-angular Airborne Imagery

The photochemical reflectance index (PRI) is a proxy for light use efficiency (LUE), and is used in remote sensing to measure plant stress and photosynthetic downregulation in plant canopies. It is known to depend on local light conditions within a canopy indicating non-photosynthetic quenching of incident radiation. Additionally, when measured from a distance, canopy PRI depends on shadow frac...

متن کامل

Using High-Resolution Hyperspectral and Thermal Airborne Imagery to Assess Physiological Condition in the Context of Wheat Phenotyping

There is a growing need for developing high-throughput tools for crop phenotyping that would increase the rate of genetic improvement. In most cases, the indicators used for this purpose are related with canopy structure (often acquired with RGB cameras and multispectral sensors allowing the calculation of NDVI), but using approaches related with the crop physiology are rare. High-resolution hy...

متن کامل

The Potential of EnMAP and Sentinel-2 Data for Detecting Drought Stress Phenomena in Deciduous Forest Communities

Given the importance of forest ecosystems, the availability of reliable, spatially explicit information about the site-specific climate sensitivity of tree species is essential for implementing suitable adaptation strategies. In this study, airborne hyperspectral data were used to assess the response of deciduous species (dominated by European beech and Sessile and Pedunculate oak) to water str...

متن کامل

Canopy-Level Photochemical Reflectance Index from Hyperspectral Remote Sensing and Leaf-Level Non-Photochemical Quenching as Early Indicators of Water Stress in Maize

In this study, we evaluated the effectiveness of photochemical reflectance index (PRI) and non-photochemical quenching (NPQ) for assessing water stress in maize for the purpose of developing remote sensing techniques for monitoring water deficits in crops. Leaf-level chlorophyll fluorescence and canopy-level PRI were measured concurrently over a maize field with five different irrigation treatm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008